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Abstract. The dynamics of a system where a mass is free to slide on a vibrating string is investigated as
the excitation frequency is varied. One degree of freedom is thus added to the system studied by Helmholtz
in which a mass was fixed on a vibrating string. This new system exhibits a specific dynamics characterized
by the existence of a self- adaptative behaviour. When the driving frequency falls into wide and well defined
frequency bands, a long transient is observed by which the mass adjusts its position so that the whole
system becomes resonant. In the gaps between these bands, bifurcations give other equilibrium positions.
A theoretical model is proposed. It accounts for all the experimental results. In the case where two masses
are present on the string, two degrees of freedom are added and the set of equilibrium positions would be
expected to be infinite. However, in the experiment, the two masses are observed to go to positions where
they are symmetrical with respect to the middle of the string. A selection mechanism due to the string
stretching is pointed out.

PACS. 47.20.Ky Nonlinearity (including bifurcation theory) – 68.45.Kg Dynamics; vibrations

1 Introduction

Vibrating strings have been widely investigated during the
nineteenth century. Several problems in this domain were
more difficult than it might seem now that it has become
a topic for textbooks. For instance, there was a strong de-
bate between Euler, d’Alembert and Lagrange [1] on the
possibility of a slope discontinuity for a plucked string.
Lagrange [1] also examined the non-harmonic vibrations
of a string with a variable density. Helmholtz [2] wanted to
determine the lower frequencies that a human being can
hear. For this purpose, he studied the basic frequencies of
a string loaded with one fixed point-like mass. Helmholtz
calculations give the eigenfrequencies of the system as
a function of the mass position along the string. It was
pointed out recently by Brazovskaia and Pieranski [3] that
this problem is equivalent to a quantum billiard with a
pointlike scatterer. However, these studies were only con-
cerned with the eigenmodes of the perturbed system. The
present letter is devoted to the study of a string loaded
with point-like masses which are free to slide. We will show
that this system, when forced by an external frequency be-
longing to large frequency bands, self- adapts to remain
resonant .

The self adaptation of a vibrating system to a forcing
frequency was previously found in two systems. In an un-
published work [4], Airiau, Couder and Rabaud observed
that when a thick soap film is forced into vibration by
a loudspeaker, the film retains a large amplitude of os-
cillation in very wide ranges of frequency. A characteris-
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tic of soap films is that their thickness can vary spatially
and that the film is liquid. When forced into vibration,
the fluid flows in such a way that in the steady regime
the mass is very unevenly distributed. With an elongated
rectangular frame, at a frequency corresponding to the nth
eigenmode, most of the film mass is concentrated in the n
antinodes. When the frequency is increased the mass dis-
tribution changes continuously so that the vibration am-
plitude remains large. Eventually, the mass in each antin-
ode splits and the film is reorganized so as to have mass
concentrated in the n+ 1 antinodes of the next mode. In-
dependently, Brazovskaia et al. [5] performed experiments
with square smectic films of uneven thickness. They found
that the film thickens at the vibration antinode. A penin-
sula consisting of many layers of smectic appears at the
antinode and its shape adapts to the forcing. However,
smectic films of constant thickness are also easily obtained;
in this latter case, they are perfect membranes with eigen-
frequencies following the Rayleigh law [6]. Brazovskaia and
Pieranski [3] also observed a self-tuning property: when a
smectic film is loaded with a small bead, it adjusts its po-
sition with the forcing frequency. The aim of the present
work is to find this type of nonlinear behaviour in a model
system, such that both the experiment and the theory can
be extensively tractable.

2 The experimental setup

The experimental apparatus is very simple: we thread one
or two beads on a string and force the oscillation of the
system magnetically. The qualities of music instruments
led us to use a piano string made of 0.5 mm diameter
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Fig. 1. Scheme of the experimental apparatus. A piano string
fixed at one end is tightened horizontally with a mass at the
other end. The magnetic field is generated by two U- shaped
magnets and two iron plates. An alternating current passes
through the string.

steel with a mass per unit length λ = 1.53 g/m. The use-
ful string length was chosen to be L = 30 cm. With a
smaller length, the bead position is not measured precisely
enough, while with a larger length, it is difficult to obtain
a homogeneous magnetic field for the forcing. The total
string mass is λL = 0.46 g. The string is held horizontally
and tightened with a mass giving a tension T = 17 N
(Fig. 1).

The beads are small disks of masses m = 0.21 g, 0.73 g
and 1.82 g. They are pierced by holes of 0.55 mm diame-
ter, slightly larger than the string diameter. Once threaded
on the string, the bead can thus have a small amplitude
bouncing motion. This suppresses the possibility of a solid
friction which could block the motion. Provided the am-
plitude of the bouncing remains very small compared with
that of the oscillation, it does not introduce any artefact
into the experiment. The results are identical to those ob-
tained when the bead slides on the string with a pure
viscous friction [7]. When the hole was drilled through the
center of the disk, the bead spun and there was a coupling
between vibration and rotation. To prevent the spinning,
the hole was drilled off-centered so that the disk forms a
little pendulum. The hole position and the disk size were
chosen so that the bead oscillation frequencies would be
very large compared to the imposed frequencies. We thus
avoid any coupling between the disk’s oscillations and the
string’s vibration.

In order to have a spatially homogeneous system, we
chose a magnetic forcing where the force exerted on the
wire is the same everywhere. An alternating current (1
to 10 A) of tunable frequency passes through the string.
This string is located between the poles of two identical U
shaped permanent magnets generating a horizontal mag-
netic field. Since we wish this magnetic field to be spatially
constant, two long and thick iron plates are interposed,
parallel to each other and located between the poles and
the wire. Since iron channels the magnetic flux, the field
which is directed from one plate to the other (Fig. 1) is
thus spread out and approximately constant along all the
length of the wire (B ∼ 0.1 T). The magnetic force is
vertical and can go up to 1 N/m. The excitation was not
perfect, the magnetic field still had slight variations along
the string. For reasons discussed below, we also used a con-
figuration where the magnetic field has its sign reversed
at the middle of the string. The driving amplitude or
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Fig. 2. The nondimensional steady positions of the bead as a
function of the forcing frequency (the unit of frequencies being
the fundamental frequency ω0 of the unloaded string). The
diamonds result from an experiment done with a bead of mass
m = 1.82 g. The different steady positions at a given frequency
were measured in independent realizations. The curves are the
predicted positions of equilibrium (solutions of Eq. (12)) for
the corresponding mass ratio µ = 4.

frequency are easily adjusted with a function generator
and measured with a frequency counter and an oscillo-
scope.

3 Experimental results

We first investigated the resonances of the string alone.
Its fundamental frequency is ω0 = 126 Hz. We measured
the amplitude of vibration as a function of the frequency.
A ruler gives a precision of 0.5 mm on the amplitude. The
resonance width is of the order of γ ≈ 5 Hz, so damping
is small. There is hysteresis in the response curve, as for a
1D nonlinear oscillator. Thus, the amplitude of vibration
is imposed by the nonlinearities and the damping may be
neglected.

3.1 With a single bead

A single bead is now placed on the string. We first describe
the results obtained with a bead of mass m = 1.82 g,
heavier than the string (µ = m/λL = 4.0). The bead
is first placed arbitrarily on the string and the system
is forced at a frequency ω. For most frequencies, when
the forcing is switched on, a slow evolution is observed
where the mass slides along the wire and the oscillations
change. Ultimately a steady regime is reached. We then
measure the bead position ξ. It is obtained with a precision
of 1 mm, i.e. 1/300 of the string length, while the precision
on frequency is 0.1 Hz, i.e. less than 1/1000 of the basic
frequency. We then repeat the same operation varying the
forcing frequency step by step so as to obtain the evolution
of ξ as a function of ω. The experimental results are shown
in Figure 2 on which, for the sake of comparison with
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Fig. 3. The same diagram as Figure 2 obtained for a light
bead (m = 0.21 g and µ = 0.46). The diamonds correspond to
the observed equilibrium positions of the bead. The thick con-
tinuous lines are the resonance positions (Eq. (12)); the thick
dashed lines are the non resonant positions given by equa-
tion (14); the thick interrupted lines are the non resonant posi-
tions given by equation (15). The three are the predicted stable
steady positions. The thin continuous lines correspond to the
bead at a vibration node; the thin interrupted lines are given
by equation (15). Both represent the unstable steady positions
of the bead.

theory, the frequencies are normalized, the fundamental
frequency ω0 of the string being chosen as unity.

At very low frequency, below any resonance of the sys-
tem, there is hardly any vibration (amplitude far smaller
than 0.5 mm) and the bead has no preferential position.
When the frequency approaches a frequency ω1 = 38 Hz
(ω1 < ω0 = 126 Hz) the bead is observed to move spon-
taneously along the wire. This motion has a time scale
of 100 s. It is much larger than the vibration time scale
which is 0.01 s. Ultimately the bead reaches the middle
of the string where it stops sliding. At ω = ω1 = 38 Hz
the vibration amplitude has become large (3 mm) and the
bead is located at an antinode. Using Helmholtz’s results
it is possible to compute the frequency of the fundamen-
tal mode of the string loaded with the same bead fixed at
the center. The resulting value is precisely ω1. This means
that the bead has spontaneously moved so as to make the
system resonant.

With a fixed bead an increase of the frequency would
detune the system. Instead, in the present situation, the
bead is observed to leave the center, moving either left or
right to a new and well defined position where the vibra-
tion amplitude of the whole system remains large. This
is a symmetry breaking process: the evolution of ξ as a
function of ω in the vicinity of the threshold ω1 shows
this transition to be a supercritical transition. When ω
comes close to ω0 = 126 Hz, the position of the bead is
near one of the extremities of the string. The amplitude
of the string vibration is still large (3 mm) but the bead
is no longer at an antinode, so that its own motion has a
small amplitude (0.5 mm). With a further increase of the
frequency, the bead reaches an extremity of the string and

-0.5

-0.25

0

0.25

0.5

1 2

ξ

ω

ξ

1

2

ω ω01

Fig. 4. The same diagram as above for the system with two
beads. Here the diamonds correspond to the simultaneous posi-
tions of the two beads with the homogeneous forcing: one bead
(grey symbols) is on the right half of the string, the other (black
symbols) is on the left half. The squares were obtained with an
antisymmetric excitation of the system. The continuous curves
are the predicted resonance equilibrium positions with homoge-
neous magnetic field given by equation (18). The dashed curves
are the predicted resonance equilibrium positions with anti-
symmetrical magnetic field given by equation (19).

is then at an antinode. The string now vibrates as if there
were no bead, with a very large amplitude (5 mm), be-
cause this occurs precisely at ω0 = 126 Hz, the frequency
of the fundamental mode of the string alone. Once again
the system has adapted to be resonant.

Above ω0, a second bifurcation occurs. As a result,
when 2ω0 is reached either the bead has returned to the
center, or again to one extremity (Fig. 2).

The same experiment done with a bead lighter than
the string (m = 0.21 g so that µ = m/λL = 0.46, Fig. 3)
exhibits mostly the same characteristics. The main dif-
ference is that ω1 = 88 Hz is larger so that the band of
frequencies between ω1 and ω0 is narrower. The mass is
observed to move a larger distance to compensate for a
given shift in frequency. Immediately above ω0 = 126 Hz,
there is a band of frequencies in which, though the bead
goes to a well determined position, the system does not
appear to be resonant (the vibration amplitudes remain
small, of the order of 0.5 mm). For larger frequencies,
large amplitudes of vibration are recovered and the equi-
librium positions of the bead are similar to the case of the
heavier bead.

3.2 With two beads

We use the same experimental apparatus but two identical
beads are now threaded on the string. The results of such
an experiment with each bead having a mass m = 0.73 g
(µ = 1.6) are shown in Figure 4. At low frequency, below
any resonance, there is hardly any vibration and the beads
take no preferential positions. At slightly higher frequen-
cies, the beads move to the middle of the string and stick
together. This occurs at the frequency ω1 = 41 Hz corre-
sponding to one single bead of mass 2m (and 2µ = 3.2).
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From there, if the frequency is increased, the beads move
in such a way as to stay together and behave as one single
bead. However, if the experiment is directly started above
the frequency ω1, the following is observed. If the beads
are placed on the same half of the string, they move in such
a way as to stay together and behave as one single bead.
If the beads are placed on different halves of the string,
they move to symmetrical positions (Fig. 4). In this case,
they will stay symmetrical for any further increase of the
frequency.

In the latter case, each bead reaches an extremity of
the string when the frequency reaches ω0 = 126 Hz. Then
they return symmetrically to the center and a supercritical
bifurcation occurs: the beads move towards the extremi-
ties or the center, remaining in symmetrical positions.

The two beads are not observed to move into the po-
sitions expected for the second eigenmode. The reasons,
detailed in Section 4.2, lie in the symmetry of the forcing
(see Morse [8]). In order to recover the even eigenmodes,
we imposed a magnetic field which reverses its sign at the
middle of the string. With this antisymmetrical forcing,
the beads move to symmetrical positions corresponding to
the second eigenmode (Fig. 4), but the odd eigenmodes are
no longer excited. In the case of antisymmetrical forcing,
the symmetrical positions exist only above a frequency
ω2 = 65 Hz (ω2 > ω1) where a bifurcation occurs: when
the frequency is increased, the beads move either towards
the extremities or the center.

4 The model and the results

The string equation is the classical wave equation for the
transverse displacement y

λ∂tty = T∂xxy (1)

where the x axis is chosen along the string at rest, the
origin is at the center; λ is the string linear density and T
the tension. The nth eigenmode is defined by its frequency
ωn = n(π/L)

√
T/λ and its shape y = y0 sin(nπ(x/L +

1/2)) cos(ωt+ ϕ). Here L is the string length.

4.1 With a single bead

If a mass m is located on the string at x = ξ, taking into
account a forcing F cos(ωt) per unit length, equation (1)
becomes

(λ+mδ(x− ξ))∂tty = T∂xxy + F cos(ωt). (2)

δ is the Dirac distribution and accounts for the punctual
mass. If the bead position changes by dξ, the kinetic en-
ergy theorem tells us that Gdξ = dK, where G is the force
acting on the bead, and K its kinetic energy. The equation
of motion reads

m∂ttξ = ∂ξK =
1

2
m∂ξ((∂tξ)

2 + (∂tη)2). (3)

Here η = y(ξ, t) is the bead transverse position. Let us
note that, of course, a Lagrangian derivation gives the
same equations of motion.

We have neglected the gravity g, as mg ∼ 0.01 N is
much smaller than the tension T = 17 N. We neglect fric-
tion between the bead and the string, it does not change
the equilibrium positions. It only contributes to stop the
bead at these positions. Moreover, the basic frequency
over resonance width ratio is ω0/γ = 25 so that damp-
ing is small. At first, we neglect nonlinearities in string
vibration. This assumption will allow us to find the bead
positions but not the vibration amplitudes.

We write equations (2, 3) in a non-dimensional form
using as units the string length L, the fundamental fre-
quency ω0 = (π/L)

√
T/λ and the time scale τ = π/ω0,

therefore

(1 + µδ(x− ξ))∂tty = ∂xxy + f cos(πωt), (4)

∂ttξ =
1

2
∂ξ((∂tξ)

2 + (∂tη)2). (5)

Here µ = m/(λL) is the bead/string mass ratio and
f = FL/T the forcing. We have omitted the tildas for the
new non-dimensional variables. ξ varies between −1/2 and
1/2. We look for periodic solutions of the form y = Y (x, ξ)
cos(πωt) and η = η0 cos(πωt) (we drop the phase since
there is no damping) so

−π2ω2(1 + µδ(x− ξ))Y = ∂xxY + f. (6)

When f = 0, equation (6) is a Schrödinger equation for a
particle in a box with a short range potential, the so-called
quantum billiard with a point-like scatterer [3]. Since ξ is
only a function of time, ∂ξ(∂tξ)

2 = 0. Therefore, equation
(5) averaged in time gives the slow dynamics of the bead
steady position ξ:

∂ttξ =
π2

4
ω2∂ξη

2
0. (7)

Thus, the dynamics is that of a bead moving in a po-
tential −π2ω2η2

0(ξ)/4, and the behaviour of (η0(x))2 gives
the equilibrium positions and their stability. We look for
solutions of (6) of the form

Y (x, ξ) =
f

π2ω2
(cosπω(x+ 1/2)− 1

+A sinπω(x+ 1/2)) if x < ξ,

Y (x, ξ) =
f

π2ω2
(cosπω(x− 1/2)− 1

+B sinπω(x− 1/2)) if x > ξ, (8)

fulfilling the boundary conditions Y (−1/2) = Y (1/2) = 0.
A and B are determined by the conditions

Y (ξ+, ξ) = Y (ξ−, ξ), (9)

−π2ω2µY (ξ, ξ) = ∂xY (ξ+, ξ)− ∂xY (ξ−, ξ), (10)

the first condition imposes continuity at x = ξ, the second
comes from integration of (6) between ξ − ε and ξ + ε in
the limit ε→ 0. The discontinuity in the string slope (see
Fig. 5) is due to the bead infinite inertia per unit length.
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Fig. 5. The string shapes obtained theoretically for µ = 4.0 at different values of the nondimensional frequencies ω. Note that
the beads generate a slope discontinuity. The amplitude units are arbitrary and are magnified to show clearly the strings shapes.
The experimental amplitudes are of the order of 5 mm, the string length being 30 cm. (a) At ω = 0.31, the system is just above
the first bifurcation and the bead is at the antinode. (b) At ω = 0.95, there is one equilibrium position near a node. (c) The
two possible solutions for ω = 1.9. In both, the bead is near a node. (d) The three possible solutions at ω = 2.4.

We compute A and B in equation (8) using the condi-
tions (9, 10) to find the amplitude of vibration of the bead
at ξ:

η0(ξ) = Y (ξ, ξ)

=
f

π2ω2

(
2 sin(πω/2) cos(πωξ)

sin(πω) + πωµ cos2(πω/2)− πωµ cos2(πωξ)
− 1

)
·

(11)

One can easily determine the bead equilibrium positions
and their stability. First, the positions where η0(ξ) = ±∞
are given by

sin(πω) + πωµ cos2(πω/2)− πωµ cos2(πωξ) = 0. (12)

These curves are plotted in Figures 2 and 3 for two
different values of µ (µ = 4.0 and µ = 0.46).

We can now revisit the system with the bead fixed at a
position ξf . For each position ξf , Helmholtz’s calculations
[2] give, with our notations, the eigenfrequencies ωf , i.e.
the frequencies at which the amplitudes deduced from the
linear string equation (2) are infinite:

sin(πωf ) = πωµ sin(πωf (ξf + 1/2)) sin(πωf (ξf − 1/2)).
(13)

The resulting curves ωf(ξf ) are identical to the curves
ω(ξ) given by equation (12). Thus, the slow dynamics of
our system leads it to self-tuning at a resonance. This is
observed experimentally: when the bead has reached its

steady position, the system as a whole has a maximum
amplitude of vibration (limited in practice to about 3 mm
because of the non-linearities). When the bead reduced
mass is large (µ = 4 in Fig. 2) the system is resonant at al-
most any imposed frequency. With a light bead (µ = 0.46
in Fig. 3) the resonance spectrum shows bands separated
by gaps with no possible resonance. When µ → 0, we
recover the simple string with resonances only at ω = 1,
2, 3 ...

Equation (8) gives the shape of the string once A and
B computed. For each frequency (in order of increasing
values) we look for the possible positions of the bead
for which the system is at resonance. The lowest pos-
sible frequency of the system (ω1 = 0.3 for µ = 4) is
found when the bead is at the center of the string, at the
antinode of the fundamental mode. Between ω1 and the
basic frequency ω0 of the unloaded string only one posi-
tion ξ of the bead (and its symmetric −ξ) can provide a
resonance. Close to ω1, just above the first bifurcation,
the resonant positions correspond to the bead slightly off-
centered and still at a vibration antinode as shown in Fig-
ure 5a (ω = 0.31). Closer to ω0 (ω = 0.95 in Fig. 5b) the
bead is close to an extremity of the string and no longer
at an antinode. At ω0 the bead reaches the node located
at the string end. Between ω0 and 2ω0, two distinct val-
ues of ξ (and their symmetric) can give resonances. This
corresponds to the second bifurcation of the system. The
shapes of the string are shown for ω = 1.9 in Figure 5c. For
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frequencies between 2ω0 and 3ω0, there are three distinct
solutions with shapes shown in Figure 5d for ω = 2.4.

There is usually a discontinuity of the string slope at
the bead, the only exception being the bead located ex-
actly at a node. The bead is at an antinode, or close to it,
in the lower frequency range. In all other cases it remains
close to a node. All these predicted shapes of vibrations
correspond exactly to those observed experimentally. As
noted above, with a homogeneous forcing, the mode two of
a vibrating string should not be excited. Here, because the
introduction of a single bead has broken the symmetry, it
becomes possible.

When the bead is light (Fig. 3) there are frequencies
for which no position of the bead can give a resonance.
These frequencies form gaps of values separating the bands
where there is resonance. Experimentally however, when
the system is excited at such a frequency, the bead is still
observed to choose a well defined position and to stay
there.

This behaviour can be understood by noting that set-
ting ∂ξη0 = 0 in equation (11) gives additional equilibrium
positions of the bead. These are absent in Helmholtz the-
ory since they do not correspond to resonances. These po-
sitions are those that are observed here in the gaps. They
are determined by two equations:

sin(πω) + πωµ cos2(πω/2) + πωµ cos2(πωξ) = 0, (14)

sin(πωξ) = 0. (15)

All the different types of solutions are shown in Figure 4.
At the intersections of the curves resulting from equations
(12, 14, 15), there are bifurcations with exchange of sta-
bility (Fig. 4). The solutions of (14, 15) (Fig. 2) are stable
only in the gaps. The observed bead positions (Fig. 4)
agree with predictions. The slight discrepancies can be at-
tributed to the weak inhomogeneity of the magnetic field
B along the string. When this inhomogeneity is made vol-
untarily larger, these discrepancies are increased.

4.2 With two beads

The observations done in continuous systems (soap films
or smectic films) show a trend for the system to adapt
by concentrating mass at the antinodes. This is observed
in the one-bead system only at the lower frequencies. It
appears that one single bead can be close to an antinode
when there is only one antinode. For the higher modes,
if the bead were to be at one of the antinodes, it would
cause this antinode to completely differ from the others,
and thus destroy the possibility of a resonance. If n beads
were placed at the n antinodes of the nth eigenmode, the
system would be tunable by a bifurcation similar to the
bifurcation observed with one antinode in the one-bead
system. The analogy with continuous systems was the mo-
tivation for the investigation of the string loaded with two
beads.

But with two beads, the system acquires two extra
degrees of freedom. For this reason, one expects the reso-
nance condition to be some function gω(ξ1, ξ2) = 0 of the
beads horizontal positions; so the set of equilibrium po-
sitions should be infinite. However, the experiment shows

2
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Fig. 6. Schematic plot of the resonance function gω(ξ1, ξ2) =
0 near a symmetric resonant position (−ξ, ξ). This graph is
symmetric with respect to the line of equation ξ1 = ξ2. A
sketch of the stretching energy Ws along the tangent is shown.

that there is only a finite number of steady positions for
each frequency. Therefore there must be a selection pro-
cess.

The selection process seems to be linked to the limita-
tions in the amplitudes of oscillations. In fact, the ampli-
tude of vibration is determined by nonlinearities and not
by damping. The observed amplitudes of the string mo-
tion at the antinodes in our experiment is A ≤ 5 mm. If it
were due to damping, we would have A/L ≈ FLω0/(Tγ)
with F = IB the magnetic force, L the string length, ω0

the fundamental frequency, T the string tension and γ the
resonance width. So the amplitude would be A ∼ 6 cm,
which is much greater than the experimental amplitude.
Hence, we have to take into account string stretching,
elastic bending and geometrical nonlinearities hidden by
equation (1). A rough estimate shows that stretching is
dominant and from Morse [9], equation (1) becomes

λ∂tty = T∂xxy +
1

2
Es∂x((∂xy)3) + F cos(ωt) (16)

where E ∼ 2 × 1011 N.m−2 is the steel Young modu-
lus and s the string cross section. The cubic term stands
for the elastic restoring force due to the string exten-
sion while vibrating. From equation (16), we estimate
F ≈ Es/L(A/L)3 so that A ∼ 5 mm, which is consis-
tent with the experiment. So, the new ingredient is the
stretching energy Ws. In terms of the dimensionless vari-
ables, it reads

Ws(ξ1, ξ2) ≈
1

8
EsL

∫ 1/2

−1/2

(∂xY )4dx. (17)

In fact we will not use this expression but we will only
use its symmetries in the beads positions. Figure 6 shows
the plane (ξ1, ξ2) where the symmetries are explicited.
Note that the system is invariant by the permutation
(ξ1, ξ2)→ (ξ2, ξ1), the symmetry with respect to the string
middle (ξ1, ξ2)→ (−ξ1,−ξ2) and so isWs and the function
gω(ξ1, ξ2). We hereafter consider the vicinity of a resonant
position (−ξ, ξ). The invariance by the transformation
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Ψ : (ξ1, ξ2)→ (−ξ2,−ξ1) shows that, at (−ξ, ξ), the curve
gω(ξ1, ξ2) = 0 has a tangent parallel to the the line of equa-
tion ξ1 = ξ2 and a parameterization ξ1 = −ξ+s, ξ2 = ξ+s
(Fig. 6). The invariance by Ψ shows that Ws is even with
respect to s: Ws(−ξ+s, ξ+s) = Ws(−ξ−s, ξ−s). Thus,
along the tangent, Ws(−ξ+ s, ξ+ s) has a maximum or a
minimum for s = 0. The experiment shows that it is actu-
ally a minimum, i.e. the stretching energy is minimum for
the resonant position (−ξ, ξ). Of course, one could make
the cumbersome calculations with the stretching energy
expression to find that the symmetric positions are se-
lected. Our intention was only to show how to guess the
solutions by only considering the symmetries in the beads’
positions.

The symmetry with respect to the string middle sug-
gests looking for the beads positions with ξ1 = −ξ2 among
the resonant positions defined by gω(ξ1, ξ2). Now we have
a single variable (ξ1 = −ξ2). The calculations are very
similar to those in Section 4.1.

For the odd eigenmodes, the string shape is symmetri-
cal and the beads’ equilibrium positions are (−ξ, ξ), ξ > 0,
where

πωµ sinπω(2ξ − 1/2) = πωµ sin(πω/2)− 2 cos(πω/2).
(18)

This curve is plotted in Figure 4. The experimental posi-
tions agree with the theoretical ones. The beads’ positions
are symmetric and correspond to resonance.

For the even eigenmodes, the string shape is antisym-
metrical and the beads’ positions are defined by

πωµ cosπω(2ξ − 1/2) = πωµ cos(πω/2) + 2 sin(πω/2).
(19)

These positions are plotted in Figure 4 and agree with the
experimental positions obtained with the antisymmetrical
configuration of the magnetic field. Again, the two beads
are in symmetric positions.

These positions are not observed with a homogeneous
forcing, because it is symmetric with respect to the string
middle. Morse [8] shows that the string eigenmodes of anti-
symmetrical shape are not excited when the forcing is ho-
mogeneous. We believe the argument of symmetry given
above offers an interpretation of a result that surprised
Morse.

5 Conclusion

In summary, we have shown that a string with one or two
sliding beads adapts itself to become resonant at the forc-
ing frequency through a slow dynamics process. There is
a dramatic change in the nature of the system with ad-
ditional degrees of freedom. While the single string has
a discrete resonance spectrum, the string with a sliding
bead acquires a continuous one. As a consequence, the
beaded string responds to the forcing with a large ampli-
tude within a whole range of frequencies.

In a forthcoming article [10], we will focus on the evolu-
tion of mass distribution as the key to the self-adaptative

behaviour of thick vibrating soap films. The large thick-
ness at an antinode corresponds to a concentration of
mass; so that it could be modelled by a bead at antinode.
Therefore, an equivalent for the soap film with n antin-
odes, would be a string loaded with n beads and excited
in the nth eigenmode. The soap film would be tunable
through bifurcations similar to the first bifurcation ob-
served with the string loaded with two beads in the case
where the beads separate from each other.

For solid membranes, the vibration modes are often
visualised by spreading sand on their surface (Chladni
figures [11]). Self-adaptation would presumably be ob-
served if the sand mass was comparable to the membrane
mass. Similarly, as there are many systems which obey the
string equation, self-tuning could be obtained in systems
such as acoustical, microwave or optical cavities having
more practical interest. In the last two cases the radiation
pressure acting on a dielectric could generate the slow
dynamics.

The authors thank M. Brazovskaia and P. Pieranski for
fruitful discussions and for sending them their preprint prior
to publication, and E. Corvera Poiré for a critical reading of
the manuscript and useful comments.
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